Задание 7

Номер варианта сайта alexlarin.net: 
Условие: 

\(F(x)\) ‐ первообразная функции \(f(x)=3x^2+2x\), причем ее график проходит через точку \((2; -3)\). Найдите \(F(-2)\). 

Решение: 

Сначала находим первообразную, затем условие из задачи используем для нахождения константы интегрирования, а потом ищем \(F(-2)\).

\(F(x)=x^3+x^2+c \Rightarrow 8+4+c=-3 \Rightarrow c=-15.\)

Окончательно первообразная принимает вид \(F(x)=x^3+x^2-15, \) тогда \(F(-2)=-8+4-15=-19.\)

Ответ -19.

Другие задачи темы: